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We have measured the dependence of the anisotropy ratio A = Oql/O~j_ of thermal diffusivity (at 300K) 
of polyethylene on the draw ratio, using a point source method. As crystallinity increases the aniso- 
tropy increases with the draw ratio. The measurements can be described with the aid of the well 
known aggregate model using the orientation parameters of the crystals as determined by X-ray 
methods which are not following an affine deformation assumption. Only one additional parameter 
is needed, the intrinsic anisotropy of a stack composed of alternating crystalline and amorphous 
lamellae. These stacks are regarded as the sub-units of deformation. The extrapolation of the intrinsic 
anisotropy yields reasonable results of A ~, 2 for the completely amorphous, and A ~ 50 for the com- 
pletely crystalline polymers, respectively. 

INTRODUCTION 

Properties of oriented polymers as well as their deformation 
orientation processes have been studied extensively during 
the past few years. In spite of recognizing a remarkable 
amount of correlation in various interpretations, scarcely 
sufficient knowledge has been gained to answer all questions 
essentially concerned with the complicated cooperative pro- 
cesses that occur during deformation to larger extents. 

It is hoped that some further progress in this direction 
may be made by an appropriate interpretation of the data 
obtained by the measurement of the anisotropy of thermal 
diffusivity at 300K of uniaxially stretched polyethylene 
having different degrees of crystaUinity. 

CLUSTER STRUCTURE 

There is substantial evidence to indicate that organized 
superstructures exist within semicrystalline polymers. Small- 
angle X-ray patterns of melt crystallized polyethylene with 
varying degrees of crystallinity can quantitatively be inter- 
preted in terms of idealized structural sub-units, the clusters, 
the sizes of which are in the range of several hundreds of 
angstroms 1-4. An example of this kind of structure, given 
in a two-dimensional representation, is illustrated in Figures 
1 and 2. The statistical nature of the structure is seen by 
SAXS characterization evidence which is in principle con- 
freed to the direction which is normal to the flat lamellae 
('longitudinal direction')*. 

For the present purposes it is sufficient to note that the 
presence of the clusters gives evidence for local anisotropy 
on various physical properties. Some of these will be con- 
sidered in the subsequent sections, with the aim of  finding 
general concepts for treating the relationships between the 
given superstructure and its influence on macroscopic 
measurable quantities. 

ting analogy. The unique structural feature common to both 
systems is the presence of long polymer chains which give 
rise to corresponding networks when crosslinking occurs s. 
We may imagine the deformation of a cluster network to be 
conducted in such a manner that affinity to the changes of 
the macroscopic shape may be imposed on the single clusters 
thus defining them as the 'sub-systems of deformation', the 
internal properties of which account for the macroscopic 
anisotropy in oriented systems due to the corresponding 
orientation and dilation of the sub-systems themselves. 

From the quantitative description of the orientation dis- 
tribution functions of higher deformed samples, the clusters 
are known to represent equally well sub-systems of deforma- 
tion which are submitted to proper shear, as well as melting, 
and recrystallization processes s-7. 

Based on these results we use an aggregate model for the 
phenomenological description of the macroscopic properties 
of oriented semicrystalline systems. In this paper we are 

ORIENTED SAMPLES 

Comparison of the cluster ensemble depicted in Figure 2 
with the structure of a molecular network reveals an interes- 
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Figure I Electron micrograph of high density polyethylene 2. There 
are always several lamellae running parallel forming 'clusters' where 
flat. The clusters are easily found by placing a proper grid upon the 
picture 



a 

b 

Figure 2 (a) Representat ion of  a cluster structure. The cluster axis 
is defined by the crystal c-axis direction. The orientation within the 
amorphous layers is correlated to the c-axis of crystals. Behaviour 
of clusters during the stretching process: (b) A t  moderate draw ratios 
1 < ~. < 2 ~ 3 (~. =//7o: I, actual; Io, init ial length of the sample) the 
clusters are mainly deformed by shear processes; (c) At high ratios 

> 2 ~ 3. The cluster size has been diminished by the local melt ing 
and recrystal l izat ion process. Further  deformation takes place 
mainly between the clusters 

substantially interested in the description of the anisotropy 
of thermal diffusivity (,4 TD) of  various polyethylene samples 
with different degrees of  crystallinity, looking for an appro- 
priate characterization of dynamical internal properties of  
the stacks at temperatures well above the glass transition 
temperature of  the amorphous phase. 

ANISOTROPY OF THERMAL DIFFUSIVITY 

The macroscopic diffusivity, a,  of  a homogeneous system is 
related to the conductivity, k, by: 
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a = k/cpp (1) 

where Cp is the heat capacity per unit mass and p is the 
density. On defining the macroscopic anisotropy, A, of  sys- 
tems with a symmetry axis, we arrive at the ratio: 

A = all/a± = kll/k± (2) 

where all/a 1 is the macroscopic thermal diffusivity parallel 
and perpendicular to the axis of  symmetry;  recognizing that 
the anisotropy of the thermal diffusivity identifies with the 
analogue ratio of  heat conductivities. 

AGGREGATE MODEL 

The macroscopic sample is considered now to be composed 
of an ensemble of stacks, the average principle diffusivities 
of  which should be defined by ail I and ai±, respectively. The 
suffix i is added as a reminder that the above symbols are re- 
lated to the stacks as intrinsic properties. On describing the 
macroscopic anisotropy of an ensemble of stacks with unb 
axial orientation, we use the series model, i.e. the additivity 
of the resistivities; of  the two linear approaches (parallel and 
series models respectively) this has been found to be the more 
accurate one. Moreover, as the error involved in the series 
model is a systematic one, the error of the calculated aniso- 
tropy ratio becomes much smaller. If  the percentage errors 
in calculating all and a± were equal, which is very likely for 
various physical reasons, the ratio derived would be exact! 
Therefore, there is no need for a more refined treatment as 
this would be a case of  calculating the absolute values. 

This method would provide the direct route and recently 
Choy and Young 2a have made a new attack on this problem 
with reasonable success. But this approach has its limitations 
- as all composite models hitherto - from the lack of  know- 
ledge of single phase properties, interrelations and structure 
dependence. In contrast, our method is to iook for structure 
units with invariant behaviour with respect to the properties 
under discussion, and then try to analyse the orientation be- 
haviour of these units during deformation. 

With the resistivity tensor components: 

a / /=  ( -  1) i +J A~/det(ai] ) (3) 

where A~. = aii, minor of  (ai/.) and ,vi; is the diffusivity 
tensor. Equation (3) reduces to o? z = 1/aii for orthorhomblc 
symmetry. We arrive at the following expressions for the 
resistivities perpendicular, a 3-, and parallel, Ot II , t o  the draw 
direction at angles q~ and 0 inclined to the symmetry axis of  
the stack: 

~1 = a l l  = (aJ -- t~/)sin20cos2~b + ~/  (4) 

~2 = a22 = (al! - ~i)s in20 sin2~ b + a~ 
l 

(5) 

a II = a33 = r~COS20 + a-~sin20 
(6) 

l 22 I t  with a~ I= a/33 and a i = a i = a i . Referring to the rotational 
symmetry of the orientation pattern with respect to the draw 
direction, the functions cos25 and sin2~b may be replaced by 
their average values (cos2~b) = (sin2@ = 1/2. Integration over 
all directions, 0, which denotes the angle between the sym- 
metry axis of  the stacks and the draw direction, then yields: 

(v) 

a"--  - a )<cos20  + a t  (8) 
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with 

= f F(O)cos2OsinOdO[ I f(O)sinOdO 

o o 

(9) 

where F(O) is the orientation density distribution of the sym- 
metry axis of the stacks with respect to the draw direction. 

With these equations, the macroscopic measurable aniso- 
tropy of thermal diffusivity, A, can be expressed as: 

o ~ _ 1  { 2 A i + l  _ 1 }  
A (10) 

a n 2 A i -  (~--- 1)(cos20) 

whereAi is consequently given by A i = a~ /~  .I = ~ll/ai.t. In 
principle, allowing for a dependence on the draw ratio accor- 
ding to: 

a~ I (X) = q(X)all0 a}0,) = q(X)a}0 (11) 

where a !,, and a,/n refer to the unstretched sample, A~ is 
found td~oe invanant, thus yielding a dependence of A on 
the second moment of the orientation distribution function 
only. In discussing A i, it is to be noted that this quantity 
should, in principle, be dependent on the internal dynamic 
properties o f  the stacks, to the origin o f  which our interests 
are mainly directed, stressing essentially the point of  whether 
there is any dynamic cooperation between the structural 
elements o f  the stack. 

METHOD OF DE SERNAMONT 

De S&namont s first demonstrated A TD with the isotherms 
due to a heat point source. We will consider the mathe- 
matics of his treatment. 

From the partial differential equation with constant co- 
efficients formulated in Cartesian coordinates: 

N 
0T ~ '  a"  a2---T " ' 

0-7 = - 'j axi ax/ + Q,vC  ) 
11 

(12) 

where Tis the temperature;a//are elements of the diffusivity 
tensor; x i is the coordinate in direction of the principal axis 
i; t is t ime;N is the number of spatial dimensions; Q is the 
rate of heat production; ON = Q/PNCp and PN is a 3- or 2- 
dimensional mass-density. We are led to the particular solu- 

f 9 , 1 0  tion for x i 4= xi and t ~ t' (Greens function) : 

the temperature pattern which refers to a definite period of 
heating with the aid of a source covering a definite, but 
small part of the sample is given by: 

t 

T(~ l t )  = f dt' f QN(-£', t')G(x~ t/-£', t')dI2N(-£') (15) 

0 I1N 

which does not take surface terms into consideration; allow- 
ance for these is made by the assumption of a sufficiently 
large volume, ~2N, as well as a sufficiently short period of heat. 
ing. The influence of macroscopic boundary conditions due 
to the limited dimensions of the sample is indicated in the 
Appendix I. In order to render equation (15) in a usable 
form, in which allowance is made for the calculation of the 
isotherms T(~) = constant, it is necessary to consider an in- 
finitely small heat source located at the origin with constant 
heat production, according to 0(37', t') = Q~(-£') where 8(-£') 
where 8(x')  denotes Dirac's delta function. Integration over 
the period of time with t' = 0 finally yields: 

T= 0.3 det(ai/)l/2R _ lerfc{R/(4t)l/2} (16) 
41r 

f e rN  = 3 

erfc(x) = 1 eft(x); eft(x) = error function 

and 

A 

T= ___Q2 det(~i/)l/2Ei(_R2/t) N = 2 (17) 
4rr 

with Ei(x ) denoting the integral-exponential function. 
Taking the principal axes as the system of coordinates we 
learn from equations (16) and (1 7) that the isotherms T(~) 
= constant are represented in both cases by the same family 
of ellipsoids: 

N N 
x.2 

ai/xixi = ~ z  = constant 
aii 

i 1 

(18) 

Denoting the principal axes of the ellipsoids by r i we are led 
immediately to the equation: 

A = aii/a/i = (ri/r/) 2 N =  2.3 (19) 

Hence, it is only necessary to record the isotherms 'visible' 
G(~, t ~ ' t ' )  = [det(ai/)] 1/2 [4rr(t- t ')] -N/2exp {-R 2/4(t-  t')} in order to calculate A according to equation (19). 

(13) MEASUREMENTS 

with 

N 

R 2 = ~ a i / ( x i  - x j  ) %  - x}) N~> 2 (14) 

1 

where an instantaneous heat point source of unit power is 
assumed to be located at (~',  t'). If the initial temperature 
of the infinitely extended systems equals the value of T = 0, 

The experimental set up is shown in Figure 3a. As heat 
source a heated metal cylinder of small diameter is in con- 
tact with its flat front area at a position in the centre of the 
surface of the slab for a certain period of time. Cholesteric 
liquid crystals are used as indicators for the optical display 
of isotherms within an accuracy of +0.1K (for more details 
see Appendix II). A representative example of a photo- 
graphed pattern is shown in Figure 3b. 

The available data for the polyethylene involved are listed 
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Figure 3 (a) Experimental set-up. The sample is in contact with 
the heat point source, WP, the temperature of which is controlled by 
a thermostat, TS. It is brought in front of the photographic camera, 
K, by means of a sample revolver, PR, containing 4 samples. The 
picture is taken with flash light illumination, B, through an ir~terfe- 
rence filter, I, in order to select a proper isotherm. The temperature 
of the samples and the heat point source is recorded by an X-t- 
recorder. All mechanical operations are carried out by a motor driven 
device, SM. (b) Example of an isotherm recording; photographic 
negative (low density PE: X = 4.8, A = 5.3) 

in Table 1, illustrating the systematic variation of the degree 
of crystallinity. 

RESULTS 

From the results illustrated in Figures 4 a - 4 d  a systematic 
dependence of A, measured at 318K, on the draw ratio, X, 
as well as on the degree of crystallinity is confirmed. The 
slope of A(X) increases considerably with increasing values 
for the degree of crystallinity, w c, thus yielding the maxi- 
mum anisotropy of thermal diffusivity for high density 
polyethylene. 

ktl and k I have been measured by Hansen and Bernier 11 
using an absolute method. Considerable agreement with the 
data obtained in this paper is demonstrated by comparison 
with Figure 4a. Results published by Novichyonok t2 are 
not as much in conformity with these data, thus a quantita- 
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tire comparison cannot be made as successfully due to the 
lack of the necessary data. 

PHENOMENOLOGICAL REPRESENTATION 

It appeared to be profitable to represent the measured A(X) 
in terms of the (cos20) values which have been computed for 
the c-axis in the crystals from the appropriate X-ray 
measurements :3. It is demonstrated in Figure 5 that a sur- 
prisingly accurate fit of the experimental data can be ob- 
tained with the aid of equation (10), assigningA i to con- 
stant values which must only be considered to be a function 
of the degree of crystallinity. The values of Ai (w c) assigned 
to the various polyethylene samples by the fit of the experi- 
mental data, are listed in Table 1. The smoothed function 
fcv ((cos20)) employed in the above calculations, is plotted 
in Figure Z 

DISCUSSION 

The tendency to attribute the regularities of the deformation 
behaviour of semicrystalline polymers to common properties 
of the superstructure receives substantial support from the 
observed independence of  Ai (w c) on the draw ratio. Its 
invariance is equally well maintained for samples that after 
being unloaded, have been relaxed into a state with a corres- 
pondingly reduced value of the draw ratio as indicated in 
Figure 4d. 

In view of the exceedingly large A i which might appear 
according to the data shown in Table 1, an 'affine' depen- 
dence as formulated in equation (11) would be difficult to 
examine with the aid of the aggregate model. Thus, we ar- 
rive at the statement that Otil I and ai± should be considered 
to be fairly independent of the draw ratio*. 

It appears almost axiomatic that the value assigned to A i 
in a semicrystalline polymer system should primarily be de- 
pendent on the locally established orientational correlations. 
Clearly, these correlations might then be characterized by 
the average number N L of crystal lamellae within the original 
clusters by means of the simple relationlS: 

NL = 1 + b[wC/(1 - wC)] (20) 

where b has been assigned the value 1.7. The above equation 
is obtained only if the average width of the lamellar shaped 
crystals, (Yb), is definitely related to the average thickness, 
(Yc) according to (Yb) = b(yc). From the above we are led to 
define the following formulation: 

& ( w O  = NL&o (21) 

where Aio represents the limiting value of Ai (w c) f e r N  L = 
1, corresponding to a system with the asymptotic value of 
w c = 0. We learn from Table I that the characteristic depen- 
dence o f A  i on w c can easily be computed ifAi0 has been 
adjusted by fitting the experimental A i obtained for low den- 
sity PE. 

Thus we have obtained the striking result that the orien- 
tational correlations which have been locally established 
during the crystallization should depend on the degree of 

* This is in accordance with the statement of Choy and Greig 14 
that the boundary resistance of the crystalline-amorphous interfaces 
which are induced during the deformation should be very small at 
these high temperatures. 
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Figure 4 Measurements o f  an isot ropy o f  thermal d i f fus iv i ty .  T s, stretching temperature: ~ = 161X d//dt, stretching rate, Wc, crystal l in i ty.  
(a) High density PE: w c = 0.82; T s = 85°C; ~= = 5 X 10-6sac -1. O, samples under stress; l ,  relaxed samples; +, calculated f rom measurements o f  
Hansen and Bernier 11. (b) Z ieg le r -Na t ta  type PE: wc = 0.69; T s = 65°C; ~= 5 X 10 -6 sec -1~. A, Samples under stress; a, relaxed samples. 

• O o - 6 S - 1  • o - - 4  1 c Lo n it  PE 1 1 I ( ) w d e  s y : W c = 0 . 4 2 .  , T = = 3 1  C , ~ = S X 1 0  - - X 0 -  sac , samples under stress; , T i = 3 1  C , e = 8 X 1 0  sec- , r e a x e d  
samples; ~ T s = 85 ° C, & = 10"Ssec -1, samples under stress; A Ts = 85°C, ~ = 10 -s sac -1, relaxed samples. The increase at ;t ~ 5 (T s = 31°C) is 
a t t r ibuted to stress-induced crystal l izat ion. (d) Low density PE: w c = 0.42. ( ), Best f i t  curve f rom Figure 4c. These are measurements at 
samples stretched at T s = 22 ° C, wi th & = 8 X 10-4 sac -1, which have been relaxed for  two days at room temperature 
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crystallinity only and remain unaltered during the deforma- 
tion, in spite of well established systematic changes of the 
superstructure (as indicated in the first sections of the 
paper). 

Equation (21) allows for an estimate of the limiting values 
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Table 1 

Samples L 1810 D ® L5041 D ® L6041 D ® 

Density (g/cm 3 ) 0.918 0.950 0.960 
Melt index (g/10min) 0.2 0.2 0.2 

(MFL 190/2.16) 
wc a 0.43 0.69 0.82 
N L (w c) 2.2 4.8 8.7 
Ai(wC)(experimental) 7 16 26 
Ai(wC) (theoretical) 7 b 16 27.5 

a Determined by X-ray methodl6; b fitted using equation (21), 
giving Ai0 = 3.15 

of Ai(w c) l~vingAio = 3,15 as the elementary anisotropy of 
the thermal diffusivity for a non-crystallized system without 
any orientation correlation which is in good correspondence 
with values assigned to the chain segments of non¢rystallized 
polymers 17. The extrapolation in Figure 6, w c -+ O, yields 
the lower value of 1.7-1.9 which is in accordance with 
measurements of oriented vinylic polymers in the glassy 
state ls'19. On the other hand, AiO takes infinitely large 
values in the limit o f w  c -+ 1 indicating that a refinement of 
the considerations is needed as far as energy density is 
concerned. 

An advanced discussion of the phonon spectrum in the 
systems under discussion is required. Despite this shortcom- 
ing it is evident that exceedingly high values for the aniso- 
tropy of thermal diffusivity of a polymer single crystal must 
be expected which must have at least the same order of mag- 
nitude as those obtained for pyrolithic graphite (.4 i = 200- 
250) 2°. 

STRESS-INDUCED CRYSTALLIZATION 

Since the anisotropy of the heat conduction of the stacks, 
A i, depends on the degree of crystallinity, any stress-induced 
crystallization should clearly be indicated by a correspond- 
ing change of the slope of Aga). Indeed A(X) of low density 
polyethylene observed under stress at ambient temperature, 
departs from the expected curve at a sufficiently large draw 
ratio on these grounds (see Figure 4c). 

The sudden increase of A(X) should be governed by a 
continuous stress-induced crystallization because of the 
stabilization of the smallest extended-sequence crystals. 
Using the approximate equation21: 

w c = xYmin(1 -1-1/3) H = 0.15 
C (22) 

where Yrnin is the minimum average thickness of the sequence 
extended mixing crystals and x c = 0.95 = the mole fraction of 
the 'crystallizable co-units' (CH2 groups in the case of the 

Figure 5 Anisotropy of  thermal diffusivity calculated using equa- 
tion (10) and the orientation parameter of  the crystals (smoothed 
curve of  Figure 7). The A I  are the intrinsic anisotropies of  the 
clusters. (a) A, HDPE A i = 26; B, MDPE (Ziegler-Natta type) A i = 
16, (b) LDPE, the crosses indicate the occurrence of stress crystalli- 
zation. A i = 7. (c) ( . . . .  ), Calculated from equation (10), with 
the orientation parameters of  the aff ine deformation model. The 
intrinsic anisotropies used are indicated. A, =; B, 20; C, 12. From 
the measurements on LDPE and HDPE respectively, it is clearly 
seen that the aff ine orientation assumption completely fails in the 
description of the experiments. Comparing the curve for  HDPE 
with the calculation for  A i --* ~, the influence of orientation on the 
macroscopic an isotropy is demonstrated 
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Figure 6 Plot of the intrinsic anisotropy of the clusters versus 
crystallinity 

Table 2 

Ai W~heor AwC Ymin 

7.6 0.46 0.03 15 
8.4 0.50 0.08 13 

10.4 0.58 0.16 10 
11.1 0.60 0.18 9 

low density polyethylene) where the non-crystallizing units 
are represented by short-chain branches, we may estimate the 
change in degree of crystallinity and find the reasonable 
values assigned toYmin which are listed in Table 2 with a 
maximum change in w c of about 0.20. 

The values W~heo t are computed by fitting the observed 
2 A(X) using equation (10) and (cos 0) derived from the 

smoothed curve assuming that further crystallization takes 
place within the stacks. 

The accuracy of this interpretation is supported by the 
observations that the stress-induced crystals melt on thermo- 
dynamic grounds if the sample is unloaded, or they do not 
appear at all if the deformation is carried out at higher tem- 
peratures. In the latter case no anomaly in the slope of 
A(X) is obtained as shown in Figure 4c. 

CONCLUSIONS 

Although a quantitative assessment of all the details cannot 
be given, a fundamental understanding of the above pheno- 
mena can be put forward employing the cluster network 
model. For these purposes it seems profitable to recall the 
fact that the chain vectors of an ideal molecular network on 
which an affine deformation is imposed will uniquely be de- 
formed according to the 'master function'. 

f(0) = h3[1 + (X 3 - 1)sin20]-3/2 (23) 

This is equally valid for each molecular network, independent 
of its special structure, and thus yields the same (cos20) 
function for the chain vectors themselves. 

To avoid possible misunderstanding it should be said that 
the orientation of the segments of a molecular network with 
an affine deformation of the junction points is not an affine 
one but depends on the structure of the chainst (e.g. num- 
ber of segments). In this case the chains represent the sub- 
systems of deformation with internal possibilities of orien- 
tation and it is this internal behaviour of the sub-system 
chosen which has to be described by a proper model. 

The affine orientation function is not valid for crystalline 
polymers, i.e. we cannot identify the 'chain vectors' with the 
crystal c-axes. Moreover, the orientation distribution func- 
tion of the crystal c-axes differs severely from the affine 
one s'13. This behaviour also appears in our measurements if 
we try to calculate the anisotropy by use of the affine orien- 
tation parameters (see Figure 5c). 

On the other hand it is clearly seen from Figure 7 that for 
fcv, computed from the A(~.) identical measurements are 
obtained for all systems of any degree o f  crystallinity 
whatever. 

The orientation parameters of the crystals determined by 
X-ray wide-angle scattering compare quite favourably with 
this curve even in the case of a slightly crystallized (w c <~ 
0.1) poly(vinyl chloride) TM. This master curve clearly reflects 
the orientation processes of a two phase polymer to which 
the system is forced by the existence of crystallites, in 
contrast to the orientation behaviour of  the segments of 
amorphous polymers (shaded area in Figure 7). 

From the existence of the master curve, the idea of 
taking the clusters as the sub-systems of deformation of a 
cluster network is readily confirmed, where we assume a 
modified affine transformation law for the 'chain vectors'. 

Nevertheless the internal orientation and dilation within 
the corresponding sub-systems (e.g. c-axes of the crystals) 
will be substantiated by shearing, sliding, partial melting and 

I.O 
___2"_- .  

o s + ~ / /  
+ j ¥ /  

o~ .  " 
3 5 7 

X 

Figure 7 The orientation parameter fcv = (3(cos20cv) -- 11/2: 
c, cluster axis, v, draw direction. ( ), Smoothed curve of the 
crystal parameters as used in the calculation of Figure 5. (-- - - ) ,  
Represents the affine deformation scheme. The symbols are 
measured values of crystal c-axis 

Sample Reference 

• LDPE 1 
• HDPE J Under stress 13 
A HDPE / 5 
O LDPE J Relaxed 
+ PVC Relaxed 18 

~" Only the 'chain vectors' obey the affine orientation function 
(equation 23). 
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Figure 8 Influence of boundary conditions. The ends of the 
samples (in the stretching direction) are kept at constant tempera- 
ture, the sides of the samples are thermally isolated. Thus the aniso- 
tropy determined by equation (19) depends on the relative diameter 
x = rj_/b of the isotherms perpendicular to the draw direction (small 
axis of the ellipse), b denotes the width of the samples; A0 is the 
exact anisotropy of the material. The length to width ratio was I/b 
= 2. A , A  0 = 10; B , A  0 = 2 .5  

recrystaUization and may greatly deviate from an affme 
deformation assumption. 

Thus, further analysis of the factors governing the defor- 
mation processes wtihin the clusters in semicrystalline poly- 
mer systems should at least lead to a unique and generally 
valid classification whereby the interrelations between the 
dynamic properties and the superstructure afford some 
deeper considerations. But this is out of the scope of this 
work and will be discussed in further communications. 
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APPENDIX I 

As our samples are clamped into the sample holder under 
stress or in the relaxed state, the sides of the samples are 
free of contact with other material, whereas the ends are 
always in tight contact with the metal clamps. As a conse- 
quence the boundary conditions are to a good approximation 
T = T O (constant) at the ends, and zero heat flux across the 
sides of the plate-like samples. These conditions are achieved 
mathematically by placing two image sources at a distance 
+-b/2 from the sides, and two image sinks at a distance of +-1/2 
from the ends, where b and I denote the width and the 
length of the sample respectively. All sinks and sources as 
given by (17) are equal in strength. As a result the form of 
the isotherms is mainly affected by their distances from the 
sides of the sample and not by the heating rate or heating 
time. For isotherm diameters less than 1/3 of the correspon- 
ding sample dimension we may further use (17) and (19) res- 
pectively for calculations, the error introduced being less than 
the uncertainty in measuring the isotherm diameters. 

A representative example for the influence of the boun- 
dary conditions is shown in Figure 8 where parameters from 
our experiments have been used. 

APPENDIX II 

By shaping the heat source as a truncated cone, a maximum 
heat flux into the sample is established for a definite tem- 
perature gradient, AT. 

Using a thermostat with sufficient circulation due to a 
bypass in the mounting of the cone, the temperature in the 
cone was controlled to within +0.1°C. 

Recording o f  the isotherms 

Cholesteric liquid crystals are used as indicators offering 
an attractive method for the optical display of isotherms 
with an accuracy of 0.1°C, 2 x 10 -3 cm and 0.1 seJ  2. 

The surface of the sample should be black. Since a chole- 
steric liquid does not absorb light, but scatters it selectively, 
it is necessary to absorb that light which is not scattered. 
This condition is met by applying a black dye. Finally, the 
liquid crystal is coated on the sample using a brush and then 
heated beyond T2 for formation. In the centre of the sample 
an area of 2 mm in diameter is liberated from the coating in 
order to obtain a direct contact between the cone and the 
sample. The liquid crystal must always be freshly coated 
because after 3 - 4  h the film surface may become marred, if 
it is exposed to the air. 

A xenon flash light was chosen for illumination. To select 
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an isotherm, a narrow band-pass f'dter for the blue xenon line 
at 467.1 nm was used Additionally, the f'flter protected the 
sample from the intense infra-red radiation of the xenon 
flash light. The visible isotherm was photographed. An 
example of such a recording is seen in Figure 3b. 

Representative parameters 
T(chamber) 27 ° + I°C 
T (sample) 27 ° -+ 0.1°C 
T(point  source) 47 ° + O.I°C 
Heating interval, t 15-20 sec 
Liquid crystal 'Thermomagic 28/30' (Merck), 
T 1 28°C 
T2 30°C 

Sample dimensions: 
Length 2.0 cm 
Width 1.0-1.8 cm 
Thickness 0.08-0.15 cm 
Narrow band-pass filter 
Central wavelength 464 nm, 
Half band width 17 rtm 

The thickness of the slabs should not exceed 1.5-2 x fold of 
the diameter of the contact area of the heat source. The re- 
producibility for measurements range from 2-5% in the iso- 
tropic and stretched samples, respectively. 
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